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Abstract Natural convection in porous medium-fluid interface problems are numerically
studied by using the characteristic based split (CBS) algorithm. The finite element method is used
to solve the goverming genmeralized porous medium equations. The accuracy of the scheme is
estimated by comparing the present predictions for a porous cavity with those results available for
the same problem. Two different types of interface problems have been considered. In the first
case, the domain is vertically divided into two equal parts, while in the second problem the division
is along the horizontal divection. Results obtained from the present investigation are compared
extensively with existing experimental and numerical data and they are in good agreement with
the available literature. Also present results are smooth along the interface and are without any
Jumps in the solution.

1. Introduction

The interface between free fluid and a porous medium saturated with the same
free fluid is very important in many industrial and real-life applications. Alloy
solidification, heat exchanger pipes, petroleum recovery, heat recovery
systems, as well as thermal insulation and ground water pollution, are just a
few to mention. In these problems the domain can be of the type partly filled
with a saturated porous medium and the rest with a free fluid. Although some
studies have been reported in the literature, still many issues related to the
interface problem have not been adequately addressed. In this paper in addition
to a detailed discussion of implementation of the CBS procedure for the porous
medium problem, the useof the generalised transient governing equation for
interface problems is also explained. Many examples are presented in order to
estimate the accuracy of the present procedure. The characteristic-based-split
(CBS) procedure is a unified approach for computational fluid dynamics
applications. This algorithm was used to solve many problems of fluid
dynamics including general compressible and incompressible flow problems
(Zienkiewicz and Codina, 1995; Zienkiewicz et al., 1995; Codina et al., 1998;
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Nithiarasu and Zienkiewicz, 1999; Zienkiewicz and Nithiarasu, 2000), shallow
water (Zienkiewicz and Ortiz, 1995), thermal (Massarotti ef al., 1998) and
turbulent flows (Zienkiewicz et al, 1995). The CBS has also been used in
problems of solid dynamics (Zienkiewicz ef al., 1999).

The CBS procedure is developed from the principles of characteristics; in
this procedure a particle is tracked along its characteristic (Adey and Brebbia,
1974). A simplified form which includes backward integration is used in the
CBS procedure (Lohner ef al., 1984). Such a simplification avoids the need for
mesh adaptation. In this paper the CBSprocedure is implemented to solve
applications of porous medium flows. The generalised porous medium
equations used in this study are similar to those of incompressible single phase
fluids. Therefore, the extension of the CBS to porous medium applications is
simple. However, the type of time stepping needs a proper selection. Fully
explicit forms are not suitable as an artificial compressibility form for
incompressible flows can take an enormous amount of CPU time. Also
recovering the transient solution is difficult. Semi-implicit form is suitable,
however a straight forward extension ofincompressible single phase flow
solution procedure is not sufficient (Nithiarasu and Ravindran (1998)). A quasi-
implicit form is certainly possible and used in many of our earlier studies
(Nithiarasu et al., 1996, 1997a, 1997b, 1997c, 1998, 1999). However, quasi-
implicit form needs simultaneous solution at all steps. In this study a semi-
implicit form has been employed to save memory and CPU time.

Many studies have been reported on the numerical solution of porous
medium equations. Kaviany (1991) and Nield and Bejan (1992) give an excellent
summary of flow, heat and mass transfer in a porous medium. Many of the
reported works use either finite difference or finite volume procedures to obtain
numerical solution to porous medium problems. Also, the application of the
generalised porous medium governing equation is not well explored in these
studies. Our recent studies by using finite element and the generalised porous
medium equations are successful and give accurate results (Nithiarasu and
Ravindran, 1998; Nithiarasu ef al., 1997a, 1997b, 1997c; Massarotti et al., 2000).
In order to further extend these advantages, natural convection in porous-fluid
interface problems are considered in this paper.

Although several studies have been reported in the Iliterature on
naturalconvection in fluid saturated porous medium, numerical investigations
onpartially filled domains with a porous medium-fluid interface are limited
(Beckermann et al., 1987; Gartling et al., 1996; Sathe et al., 1988; Alazmi and
Vafai, 2001). Although very recently, Alazmi and Vafai (2001) used the
generalized model, the problems considered by them are of forced convection
type. Applications of most of the other studies are restricted by either Darcy’s
law or its extensions to porous medium flows. Thus a general procedure
addressing all the essential features is necessary in order to understand
thoroughly the natural convection in interface problems. In the authors’ view,
combination of the generalised porous medium equations and the CBS
algorithm with finite elements is a good option available to study the interface



problems. In this paper the implementation details of the CBS procedure is Porous medium-

presented. In addition to the implementation aspects, some further details on
the interface conditions are also discussed in this paper. The paper is organised
into the following sections: in the next section, the generalized governing
porous medium equations are summarised; the CBS procedure, temporal and
spatial discretization are discussed in section 3; in section 4, the interface
boundary conditions are presented; some examples including validation of the
procedure are given in section 5. Finally, in section 6 some conclusions are
drawn from the study carried out.

2. Governing equations
In the present paper incompressible viscous flow through a porous medium has
been mathematically described by using the generalized model. The general
form of the equation for a medium of variable porosity can be derived by
averaging the Navier-Stokes equations over a representative elementary
volume (REV), using the well known volume averaging procedure (Whitaker,
1961; Vafai and Tien, 1981; Hsu and Cheng, 1990). The momentum equation for
a fluid saturated porous medium can be written as:

ou u-u peu Felulu

Q[E* V(T)] B ey

+B (1)

where all quantities are represented by their average values in the REV. In the
above equation u is the seepage (Darcy) velocity vector, p is the pore fluid
pressure, o is the fluid density, p, is the effective (or Brinkman) viscosity, F'is
the so called Forchheimer’s coefficient, e the porosity of the medium, and B
represents the body forces acting on the system. The hydrodynamic and
thermal dispersions have been neglected for the sake of simplicity and the
Ergun’s correlation (Ergun, 1952), for packed beds, is used to represent the total
drag force of the solid matrix on the fluid. In particular the permeability K and
the Forchheimer’s coefficient F' can be written as:

ed? b
y4 ; F= -
a(l—e) Vae

with ¢ and b being Ergun’s constants, and d, the average particle size of the
bed.

In order to evaluate velocity and temperature fields in the porous medium it
is necessary to solve the continuity, momentum and energy equations. For a
medium of constant uniform porosity and constant properties except density,
the system of equations, (nondimensionalized with respect to the fluid
properties) can be written as:

continuity equation:

K =

V-u=0 (2)
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momentum equation:
10u 1 R,Pr_, Pr C
= = —2u-Vu— Vp + - Veu — <m+\/—D_a|u|>u + RaPrTg (3)
energy equation:
Rcaa—? =—u-VT +RV?T (4)

defined in Q x [0,#] with QO C %2 domain of interest. In the momentum
equations, as mentioned, all the properties are assumed to be constant except
fluid density. Fluid density variation is incorporated by invoking the
Boussinesq approximation. R, is the ratio between the effective viscosity and
the fluid viscosity, g the unit vector along the gravity direction, and
C = 1.75/V/150.

In the energy equation T is the temperature, R, represents the ratio
between the conductivity of the fluid and that of the porous medium saturated
by stagnant fluid (effective conductivity), and R, is the nondimensional
average volumetric heat capacity ratio, which has been assumed to be
constant. The following scales have been employed to nondimensionalise the
equations:

u > # T _T.
= — _—_— = T - @@
a/L’ b 0a2 /L2’ ! Lo’ Ty — T, ©)

X = u

X*
L Y
and the following nondimensional parameters have been used:
_gB(T — T K

_ K 2l =
Prfga, Ra - , Da 7 (6)

with « thermal diffusivity, 3 coefficient of thermal expansion, and p and v
dynamic and kinematic viscosity of the fluid respectively; x is the position
vector and g represents the magnitude of the gravitational vector, T3, T, and
L are respectively the hot and cold wall temperatures and the characteristic
length of the problem considered. In the above quantities, asterisk is used for
dimensional variables. The parameters introduced above are the Raleigh
number Fa, the Prandtl number, Pr and the Darcy number, Da.

3. The CBS procedure

As mentioned in the introduction, the CBS (characteristic based split)
algorithm, introduced by Zienkiewicz and co-workers for the solution of
Navier-Stokes equations, has been adopted to solve the set of generalized
porous medium equations. In this section, the CBS procedure for the solution of
porous medium equations is described. For more fluid dynamics problems, the
reader may refer to other works, mentioned in the introduction.



3.1 Temporal discretization

The momentum equation introduced in the generalized model is similar to
convection-diffusion equation and can therefore be discretized in time using the
characteristic-Galerkin process. In particular, the time discrete momentum
equation in its semi-implicit form can be written as

i [ wow RPrdfw At 0 (w0u\]"
eAt | 20x | € oxox 2 ‘om\&ox

qn+l n
—el[Pr Z+CM] —(1—91)[”  +cY “] YRaPr T'g;

Da \/D_aﬁg/z VDa€e?
op1" op At 9p
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In the above equation ¢; = 1 and 8 = 1 have been employed in this paper. The
pressure in the equation has to be treated as a known quantity and therefore
needs to be computed from another equation. Although researchers have used
quasi-implicit techniques to solve these porous medium equations (Nithiarasu
et al., 1996, 1997a, 1997b, 1997¢c, 1998, 1999) in the present work a semi-implicit
procedure, of the type introduced by Nithiarasu and Ravindran (1998), is used.
Taking all terms due to the porous matrix to the left hand side of the equation,
we have

w P ol et op T [0
eAt D(l v/Da 63/2 N EAf 0x; Ezaxj
At 0 (ujou\1" [R,Pr &*u; 1"
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The first step of the CBS algorithm is the calculation of an intermediate velocity
u from the momentum equation without including the pressure terms. We now

have
1 Pr u| 1\. ' [u0u)"
<6At et VD 63/2) CeAt €20y *

At 9 (ujou\1" [R,Pr &*u; 1"
NI O Rapr T g,
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In the second step the pressure is calculated from a modified Poisson equation,
which ensures the continuity equation to be satisfied, and for the generalized
model can be written as:
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In the third step the real velocity values are obtained from the following
correction, obtained simply by subtracting equation (9) from equation (8):

478 nt1
N 1 Pr lu| 1 op
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For thermal flow problems, the next step of the procedure involves the time
discretization of the energy equation, in which the velocities are known from
the previous steps.

Tn+1 T" —

g[ oT PT At a( 8T>]" 12)
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Once the equations have been discretized in space it is possible to solve them in
the order presented, so evaluating all the variables at time # + 1.

At this stage the above system of equations can be discretized in space as
described below.

3.2 Spatial discretization and solution procedure
When the characteristic-Galerkin procedure is used, the Galerkin spatial
approximation is justified. The weak form of the above system of equations,
using the standard Galerkin approximation, can be written as

Step 1: intermediate velocity calculation

1  Pr [u] 1
(L L7 k
/N<¢ﬁ' waﬂQdQ UNem }
» (4 Ou; Y / " 0 (ujOu; !
[/N( a}@)dﬂ} + 5 { N 8xk ¢ o, ds) (13)
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Step 2: pressure calculation
) n+1
¥ (Gae) 2] -
0x;0%; (14)
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Step 3: velocity correction
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Step 4: Temperature calculation
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(16)
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In this work equal order interpolation functions have been used for velocities,
pressure, and temperature. Therefore the variables have been approximated as
follows:

u;=Nuw, 4; =Nu; p= Np T = NT (18)

where the shape functions N = [N'.... N*.... N”] are the weighting functions
as we are using the standard Galerkin procedure, and the nodal values of the
variables are:

R m] T =~

~1 ~k ~m]T
1

p=pl..pr ) T= [T T T

Introducing the approximated functions (18) in equations (13)-(16) we finally
have the following system of algebraic equations,written in matrix form:

Step 1:

POR[M] (i} = (M) ()" + 2 [C] {u}" + A (K] {u) + (£
2
+ (%) K, {w}" + AtRa Pr (M| {T}"g; (19)
Step 2:
POR

K] {p}""" =% QI {} (20)
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Step 3:
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In the above discretized equations second order terms have been integrated
by parts and vectors {f} represent the related boundary integrals. Boundary
terms that result from integration by parts of the stabilizing terms are not
included as they have no influence on the solution. Equations (15)-(18) can be
used for the solution of incompressible natural convective flow through a
porous medium and for single phase natural convective flows with
appropriate changes in the porosity values. As mentioned before, changing
the properties such as porosity and thus permeability, it is possible to handle
porous-free fluid interface problems as a single problem with different
properties. The following porosity limits are used for a porous medium part
and single-phase fluid part.

e <1 .
= porous medium

e=1 .
Da = finite Da — o = free fluid (23)

We just need a suitable set of matching conditions to connect the porous and
single-phase domains. In the following section, the interface conditions are
discussed for a porous-fluid interface problem.



4. Interface matching conditions

Matching conditions for velocity, pressure and temperature at the interface
between a porous layer and a free fluid are still not well established. Although
mass, momentum and energy conservation is clearly satisfied across the
interface in the microscopic approach, it is not clear at the macroscopic level
(Gartling et al., 1996; Alazmi and Vafai, 2001). In the present work, no attempt
has been made to establish any new conditions across the boundary and the
classical continuity conditions have been employed. When continuity of mass,
momentum and energy is assumed, the following matching conditions need to
be satisfied at the interface:

(] — by =0
(0; — o) = 0 (24)
(Ti]f - Tﬂp)t] =0

where superscripts f and p refer respectively to free fluid and porous medium;
n; 1s the unit vector normal to the interface and #; is the unit vector in tangential
direction; 7;; is the deviatoric or viscous stress, and oj; is the tangential stress.

The above conservation equation, using the standard Newtonian
constitutive relations for the tangential stress, do not provide any constraints
on the tangential component of the velocity. This assumption was explicitly
made in the present work. Pressure is generally assumed to be continuous
across the interface and this requires that the normal components of the fluid
viscous stress are balanced across the interface (Gartling et al., 1996). Nield and
Bejan (1992) argued that in this waythe stress in the solid matrix is not taken
into account properly. The authors are aware of the fact that this will lead to an
over prediction of the flow magnitude and influx into the porous medium.
However, this short coming may be overcome through a better understanding
of the Brinkman viscosity, but for the sake of simplicity, in this paper the
effective viscosity is assumed equal to the fluid viscosity. Further study on the
calculation of equivalent viscosity is being carried out in order to get a better
approximation of interface conditions. In addition to conditions mentioned
above, continuity of tangential velocity is also imposed. This assumption is
valid at least for the nodes where the porosity is close to unity. Further research
1s being carried out by the authors to validate this assumption. With regards to
thermal conditions, local thermal equilibrium and the energy conservation are
assumed along the interface:

TP =0

o1’ oT? (25)
-R =0

( 8xl- k 8xl- )n

With the above assumptions, the nodal equations (19)-(22) do not need any
particular treatment at the interface. The nodes placed along the interface will
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Table L.
Comparison of the
average Nusselt
number

get adequate contributions from elements placed in the fluid and in the porous
medium.

5. Results

In this section, the numerical results are presented. In the following subsection
the present procedure is validated by using some bench-mark porous medium
problems. In a later subsection two types of interface problems are discussed in
detail.

5.1 Natural convection in a square cavity filled with fluid saturated porous
medium

The accuracy of the present solution methodology is verified by solving the
natural convective flow in a differentially heated square cavity filled with fluid
saturated porous medium. The no slip boundary conditions are assumed on all
walls. The horizontal walls are assumed to be insulated. The mesh used for this
case has 2,601 nodes and 5,000 elements. The mesh is non-uniform and a
geometric progression is used to generate a finer mesh near the walls and
coarser towards the center. The first nodal point is placed at a non-dimensional
distance of 0.005 from the walls.

In Tables I and II, the results obtained from the present computations are
compared with the available analytical and numerical results. As seen the
results obtained by the CBS procedure is in good agreement with available data
for the Darcy and Rayleigh number range considered.

5.2 Porous-free fluid interface problems

Two types of interface problems have been considered to test the present CBS
procedure. In the first case, the domain is divided vertically into two equal
parts and one part is filled with a free fluid and the other with a porous medium

Da 1076 107 1072
Ra 107 108 10° 108 10° 10* 10°  Reference

1074 2969 11.699 2580 1.008 1.359 2986 Nithiarasan and Ravindran
(1998)

1.079 2970 11460 2550 1.010 1408 2983 Nithiarasan et al. (1997a,b,c)

1072 3039 13464 2722 1.001 1404 3110 Present

Table II.
Average Nusselt

number for the Darcy

regime, Dz = 107°

Ra 107 108 10° Reference
1.074 2.99 12.30 Nithiarasu and Ravindran (1998)
- 3.09 12.49 Walker and Hosmy (1978)
1.07 3.09 1341 Lauriat and Prasad (1989)
- 3.27 18.38 Trevisan and Bejan (1985)
1.080 3.02 12,51 Nithiarasu et al. (1996)
1.072 3.04 13.46 Present




saturated by the same fluid. The vertical wall adjacent to the free fluid, on the
left hand side of the cavity, is considered to be hot, while the opposite wall,
adjacent to the porous matrix, is cold. In the second case considered, the
domain is equally divided into two parts horizontally and the bottom portion is
assumed to be filled with the fluid saturated porous medium. Figure 1 shows
the finite element mesh and boundary conditions for the first problem. The
mesh is graded near all walls and along the interface of the problem which is at
the middle of the cavity. The domain is meshed with 4,608 elements and 2,401
nodes.

The stream lines and isotherm patterns obtained for the vertical interface
problem are shown in Figure 2 for the Darcy regime (Ra = 3.028 x 107,
Da=7.354x10"7, Pr=6.97, ¢ =0.36, R, = 1.397). As seen, the results

~Interface
;

Mo skp cn all walla
Hoizomlal walld iresdlakad
‘Warlical walls g1 bwe dillerant 'II‘.'I'"'IPEI'ahJ"E’S

(a) ik
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Figure 1.

Natural convective flow
in a porous-free fluid
vertical interface
problem. Finite element
mesh and boundary
conditions

Figure 2.

Natural convective flow
in a porous-free fluid,
vertical interface
problem: Darcy regime
(a) Stream lines; (b)
isotherms
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Figure 3.

Natural convective flow
in a porous-free fluid
vertical interface
problem Darcy regime.
Comparison of
temperature distribution
with experiments

obtained with the CBS procedure predict the interface transition smoothly
without any form of jump. Since this figure corresponds to the Darcy regime,
the porous medium part (right half) is dominated mainly by conduction mode
of heat transfer. The flow in the porous medium part is weaker than that in the
free fluid region. A maximum stream function value of |[¥| . =15.38 is
observed in the fluid region and the value obtained by Beckermann et al. (1987)
is |¥|,,..=15.98. The flow and isotherm patterns presented here are in excellent
agreement with the experiments and numerical results of Beckermann et al.
(1987). Figure 3 shows the comparison of temperature distribution at different
horizontal sections across the cavity with experimental and available
numerical data. The agreement is excellent, and in particular it can be noticed
that the change in slope of the isotherms at the interface is well predicted.
Furthermore there seems to be an over prediction of the fluid penetration into
the porous region. This result, as previously mentioned was expected and could
be improved using a proper value for the effective viscosity.

In Figure 4, the results obtained in the non-Darcy regime (Ra = 3.028 x 107,
Da =1.296 x 10°, Pr =6.97, ¢ =0.38, R, = 1.383) have been given. As
expected the fluid influx into the porous medium is much higher than that of
the Darcy flow regime of Figure 2. However, the flow in the porous region is not
as strong as it is in the free fluid. The thermal boundary layer near the top right
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corner in the porous region is observed to be thicker than that of the bottom left
corner in the fluid region. However, towards the bottom the boundary layer
expands slowly in the porous region but towards the top, in the fluid region the
expansion of the boundary layer is rapid with almost zero heat flux at the top
left corner. This is the way in which the energy is conserved in these porous-
free fluid interface problems.

As mentioned earlier, the second type of problem is an enclosure divided
horizontally as shown in Figure 5(). The bottom half-filled with the fluid

= )

¥
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T, I
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B
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Figure 4.

Natural convection flow
in porous-free fluid
vertical interface
problem non-Darcy
regime: (a) stream lines;
(b) isotherms

Figure 5.

Natural convective flow
in a porous-free fluid
horizontal interface
problem: (a) geometry,
thermal boundary
conditions and (b) mesh
used
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Figure 6(a).

Natural convective flow
in a porous-free fluid
horizontal interface
problem, stream lines at
different Rayleigh
numbers, Da = 107,
Pr=10,R, =10

saturated porous matrix. The mesh generated for this problem contains 2,231
points and 4,224 elements, which are not homogeneously distributed, as shown
in Figure 5(b). All the walls are assumed to obey no slip conditions, horizontal
walls are insulated and vertical walls are placed at two different temperatures
which trigger the buoyant flow.

Figures 6(a) and (b) show respectively the stream lines and isotherms for
the horizontally divided problem calculated by using: Ra = 10°, Da = 1073,
Pr=10.0, e = 0.4, B, = 1.0. As seen the flow is smooth without any jump in
the solution. As expected the flow in the fluid region is much stronger than
that of the porous region. The heat transport across the cavity is much higher
in the fluid region than that of the porous region as the convection is stronger
there.

In order to compare the results obtained using the present CBS procedure
with some experiments, one case for high a Prandtl number was run, and the
results are compared in Figure 7 with those presented by Nishimura et al.

Ba=10" Ra=10" Ra=10*
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Figure 6(b).

Natural convective flow
in porous-free fluid
horizontal interface
problem, isotherms at
different Darcy
numbers, Ra = 10°,
Pr=10,R, =10

* num. Rshimura &
* gxp. Mshimura & al

Figure 7.

Natural convective flow
in a porous-free fluid
horizontal interface
problem, temperature
distribution for

Da =35 %1075,
Ra =10°, Pr = 8,000,
R,=10
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Figure 8.

Natural convective flow
in a porous-free fluid
horizontal interface
problem, local Nusselt
number distributions,
Ra =5 x 104, Pr =10,
R,=1.0

(1986) for silicon oil as the fluid and glass beads as the solid matrix. The
temperature is evaluated at five different horizontal sections, in the porous
as well as in the fluid part of the cavity. The present results, in general, are in
excellent agreement with experimental data. In Figure 8 the local Nusselt
number on the cold wall at two different Darcy numbers is compared to
the other numerical results. It can be noticed that, while in the porous
medium the agreement is excellent, in the fluid part there is a small
difference, especially on the peak values. The over prediction of Nishimura et
al. (1986) could be attributed to the coarse mesh and difference in the model
employed.

L
t
— Da= 107 Present
. - =Da= 1 :I"n.'.-:l.'lr.
. v kg = 1) ) i Mishimiura er al 19SEG)

c [a= 1~ (Mishomur ef afl 1985
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6. Conclusions

In this paper, the characteristic based split (CBS) algorithm was implemented
for a porous-free fluid interface problem. The finite element method was
successfully employed to solve the governing generalized porous medium
equations. It was demonstrated that the generalized porous medium model
without any special treatment can be applied to both porous medium and free
fluid in a single domain. The results obtained for both the problems considered
were in good agreement with the available numerical and experimental data.
Further study is necessary to extend the present procedure for more complex
geometries.
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